Low rank methods for a class of generalized Lyapunov equations and related issues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-rank Iterative Methods for Projected Generalized Lyapunov Equations

LOW-RANK ITERATIVE METHODS FOR PROJECTED GENERALIZED LYAPUNOV EQUATIONS TATJANA STYKEL Abstract. We generalize an alternating direction implicit method and the Smith method for large-scale projected generalized Lyapunov equations. Such equations arise in model reduction of descriptor systems. Low-rank versions of these methods are also presented, which can be used to compute low-rank approximat...

متن کامل

Efficient low-rank solution of generalized Lyapunov equations

An iterative method for the low-rank approximate solution of a class of generalized Lyapunov equations is studied. At each iteration, a standard Lyapunov is solved using Galerkin projection with an extended Krylov subspace method. This Lyapunov equation is solved inexactly, thus producing a nonstationary iteration. Several theoretical and computational issues are discussed so as to make the ite...

متن کامل

Low Rank Solution of Lyapunov Equations

This paper presents the Cholesky factor–alternating direction implicit (CF–ADI) algorithm, which generates a low rank approximation to the solution X of the Lyapunov equation AX + XAT = −BBT . The coefficient matrix A is assumed to be large, and the rank of the righthand side −BBT is assumed to be much smaller than the size of A. The CF–ADI algorithm requires only matrix-vector products and mat...

متن کامل

Low Rank Approximation Solution of a Class of Generalized Lyapunov Equation

Xuefeng Duan College of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 541004, P.R. China Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, P.R. China Email: [email protected] Zhuling Jiang College of Mathematics and Computational Science, Guilin University of ...

متن کامل

Low rank approximations of infinite-dimensional Lyapunov equations and applications

Lyapunov equation. We analyze the approximation properties of solutions of abstract Lyapunov equations in the setting of a scale of Hilbert spaces associated to an unbounded diagonalizable operator which satisfies the Kato’s square root theorem. We call an (unbounded) operator A diagonalizable if there exists a bounded operator Q, with a bounded inverse, such that the (unbounded) operator Q−1AQ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2013

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-013-0521-0